
LLNL-CONF-544131

Performance Portability for
Unstructured Mesh Physics

J. A. Keasler

April 2, 2012

DOE Exascale Research Conference
Portland, OR, United States
April 16, 2012 through April 18, 2012



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Performance Portability for Unstructured Mesh Physics

Jeff Keasler

Lawrence Livermore National Laboratory
7000 East Avenue

Livermore, California
{keasler}@llnl.gov

ABSTRACT
ASC legacy software must be ported to emerging hardware
architectures. This paper notes that many programming
models used by DOE applications are similar, and suggests
that constructing a common terminology across these mod-
els could reveal a performance portable programming model.
The paper then highlights how the LULESH mini-app is
used to explore new programming models with outside so-
lution providers. Finally, we suggest better tools to identify
parallelism in software, and give suggestions for enhancing
the co-design process with vendors.

1. INTRODUCTION
Nearly two decades ago, the High Performance Computing
community settled on a model of parallel computing based
upon commodity hardware (clusters of nodes using mass
produced microprocessors) and commodity software (Unix-
like Operating Systems with MPI and OpenMP parallel soft-
ware interfaces). ASC invested hundreds of man years into
writing software for this model. We are exploring ways to
evolve this legacy programming model to adapt to emerging
hardware, or worst case, to try to identify a new model that
will be more portable as we face the prospect of new and
disruptive hardware technology.

2. PROGRAMMING MODELS
We have observed that many of the largest mesh based
physics applications in the DOE have settled on a similar
underlying software model to manage their parallel data at
scale, but each model is described using different terminol-
ogy. For example, we have noted that several DOE program-
ming models are based on the concepts of locality contexts,
index sets, and entity relations:

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labo-
ratory under contract DE-AC52-07NA27344 (LLNL-PROC-
xxxxxx).

Locality context Simulation data is defined over mesh sub-
sets. Each subset is often associated with one or more
arrays, each array having a length equal to the car-
dinality of the subset. Examples of locality contexts
used in applications include: View(ALE3D), Patch-
Data(SAMRAI), Bucket(SierraToolKit), LayoutData
(Chombo), GridFunction(Cactus), Store(Loci), Entity
Set-Tags (ITAPS), etc. Mesh subsets can often be ar-
ranged in arbitrarily deep hierarchies in these models.

Index set Index sets are used to identify entities within
a locality context, or to provide a mapping between
entities in child and parent locality contexts. Exam-
ples of index sets used in applications include: In-
dexSet(ALE3D), Box(SAMRAI), Part(SierraToolKit),
BoxLayout(Chombo), Grid(Cactus), Map(Loci), Enti-
tySet(ITAPS), etc.

Entity relation Entity relations are used to describe in-
teractions between entities that have been defined on
distinct subsets or topological centerings (i.e. node, el-
ements, faces, etc.). Entity relations can also be used
to define stencil relations within a single locality con-
text.

By taking a step back and creating a common terminology
for concepts found in disparate programming models, we as
a community could potentially identify a unifying API that
could provide a reusable performance portable programming
model to map software to hardware at scale.

3. UNSTRUCTURED MESH MODEL
At Livermore, we have been discussing a programming model
with the following features:

Locality context layer This layer is responsible for the
declaration, partitioning, placement, ordering, inter-
leave, alignment, and allocation of array data. Each
listed responsibility must be implemented to achieve
performance portability across diverse architectures.

Index set layer This layer is responsible for decoupling
the ordered or unordered traversal of locality contexts
from the specific algorithmic kernels being applied.
This differs from current programming models where
loop traversal is directly bound to the loop body in a
way that enforces a specific serialized sequential traver-
sal.



Communication layer This layer is responsible for com-
municating data between locality contexts. This layer
includes a dependency scheduling and flow control com-
ponent.

In mesh based physics software, we have observed that most
loop constructs are dedicated to task based or locality-context
based traversals. Examples of locality-context based traver-
sals include (1) a triply nested loop iterating over a 3D
block-structured mesh, or (2) a single unstructured mesh
loop iterating over entities in arrays referenced directly or
indirectly through the loop control variable. We would like
to have a single, unified, and performant index set abstrac-
tion embodying both traversals (1) and (2).

A block-structured traversal can be represented by (2*num-
ber of dimensions + 1) integers, which is a compact and
low memory bandwidth traversal space representation. Pro-
grammers often arrange loop nests based on these integers
to achieve highly optimizable stride-one data access. If the
compiler can see the stride-one loop nesting, it enables vec-
torization. Furthermore, this stride-one access pattern can
activate hardware prefetch streams making memory move-
ment even more efficient for this kind of abstraction. The
traversal pattern for this kind of index set is very specific,
and mostly inflexible.

An unstructured traversal is typically implemented by an
explicit list of integer indices used to access entries in associ-
ated arrays. This list of integers has to be streamed through
memory and can consume limited cache resources. Compil-
ers can’t typically vectorize unstructured index traversals
because the indices can be modified at runtime. Hardware
prefetch streams can still work as long as the indices are
stride-one ordered. Hardware threads and Instruction Level
Parallelism (ILP) can sometimes hide some of the perfor-
mance issues associated with unstructured index sets. The
value of unstructured index traversals is their unlimited flex-
ibility, and their amenability to reordering at runtime.

A hybrid index traversal is described by a run-length-encoded
array of structured ranges and unstructured lists. An algo-
rithmic loop body can be bound to a hybrid index set via
a C++ lambda function or a C++ functor in such a way
that the loop can be versioned into two paths – one for the
structured ranges and one for the unstructured lists. The
structured range paths can be vectorized at compile time.
Furthermore, alignment assumptions can be embedded into
the hybrid index set, guaranteeing that structured ranges
begin on a SIMD or GPU warp boundary and have a SIMD
or warp length granularity. In practice, hybrid index sets
consist mostly of sorted stride-one ranges, so the hybrid
index set can often be stored with a very compact mem-
ory representation, and operations can occur on long vector
lengths. Finally, hybrid index sets are amenable to hetero-
geneous architectures where the unstructured lists are run
on the scalar resources and the structured ranges are run on
the vector resources of the hardware architecture (possibly
simultaneously).

We have implemented hybrid index sets in the context of the
Intel C++ compiler, and have found the generated assembly
code to be optimally compact and efficient. This proves that

the Intel compiler possesses the internal machinery necessary
to properly optimize this construct. On the other hand, we
have found that the programmers must go to great lengths
to make sure these optimizations are applied. We believe
that through closer interaction with the compiler vendors,
we could suggest simpler ways to expose these optimizations
at the source level in a way that will be portable across com-
pilers. Furthermore, such direct compiler vendor interaction
could actually result in a more optimized implementation
of programming models such as Threading Building Blocks
within the Intel compiler. We believe it is the lack of direct
contact and working together that prevents the more general
availability of these optimizations – not technical barriers.

4. MINI-APP: LULESH
In practice, large legacy software applications are difficult
to modify in-place, complicating our ability to explore new
programming models and collaborate with vendors. To ad-
dress this, the DOE community has been creating small test
bed applications, or mini-apps, that are designed to be rep-
resentative of computational patterns found in larger appli-
cations. A mini-app must contain sufficient complexity to
clearly expose interactions found in real applications if it is
to be useful for co-design. On the other hand, a mini-app
must be compact enough to allow developers to explore new
programming models with only a few hours or days of effort.

The DARPA UHPC program funded work on the Liver-
more Unstructured Lagrange Explicit Shock Hydrodynam-
ics (LULESH) mini-app which was specifically designed to
evaluate new architectures and compilers. LULESH consists
of a serial reference implementation and thorough documen-
tation, helping system hardware and software developers to
understand key aspects of unstructured mesh based physics.

LULESH has since been extended to work with OpenMP,
CUDA, MPI, Chapel (HPCS), Loci (parallel functional/relational
model), and a few other software systems. Several algorith-
mic variants of LULESH have been created to explore soft-
ware maintenance vs. performance tradeoffs. A preliminary
fault tolerant version of LULESH has been explored by Maya
Gokhale at LLNL. Academic collaborators at Rice Univer-
sity and Ohio State University have worked with LULESH.
The Sandia SST simulator has been applied to LULESH and
a paper on that work is in submission to SC12. LULESH is
a key application being used by the AATEMPS, AASD, Ex-
MatEx, and ”Data Abstractions for HPC”projects at LLNL
to explore scalability on future hardware systems.

5. CASE STUDIES: CHAPEL AND LOCI
LULESH has been ported to the Chapel and Loci program-
ming models. Chapel is designed to answer the question,
”How can I decompose parallel performance portability into
manageable subtasks?”while Loci answers the question, ”How
can I assemble manageable subtasks into a parallel and per-
formance portable program?” In other words, Chapel takes a
top-down approach to parallelism, while Loci takes a bottom-
up approach.

Despite different approaches to parallelism, Chapel and Loci
are very similar. Both models strive to make the parallel
program look like a serial program to help simplify reason-
ing about parallelism and to improve software maintenance.



Both models reduce the size of parallel programs when com-
pared to traditional parallel programming techniques. Both
models have sophisticated features to help tailor software to
a diversity of hardware environments with little additional
work from the programmer. Both models rely on index sets
as a key abstraction to simplify software maintenance and
attain portable performance.

The Chapel programming model uses index sets through
the Domain concept, which provides a global namespace to
label data entities used within parallel programs. Chapel
allows programmers to tune Chapel applications to different
hardware environments using DomainMaps and other so-
phisticated object-oriented features. The Chapel team made
an initial port of LULESH to Chapel that used a block-
structured mesh abstraction. While the block-structured
port was true to the implementation of the LULESH mini-
app, it was clear to the Chapel team that perhaps this port
was not in the spirit of what the LULESH mini-app really
meant to capture. This initial Chapel port of LULESH led
to additional collaboration between the LLNL and Chapel
teams. A face-to-face multi-day meeting was arranged where
we were able to port the block-structured Chapel LULESH
to be a completely unstructured mesh application in three
to four hours with very few changes to the original Chapel
source code. Some additional hours were needed to debug
unstructured mesh boundary conditions. As the result of our
direct interaction over several days, we exchanged domain-
specific knowledge that lead to discussions about improve-
ments to the LULESH software structure and possible op-
timizations that could be added to the Chapel compiler to
improve Chapel’s performance on unstructured (and possi-
bly block-structured) mesh physics applications. This di-
rect pair-programming interaction between compiler vendor
and application developer was vital to understanding how
to make needed changes to both the compiler and the appli-
cation.

The Loci programming model uses index sets through the
Map concept, which implements a relational data model be-
tween mesh entities. Functions in Loci are specified in terms
of rules applied to data entities. The dependencies implied
by these rules are assembled to form a unique execution
schedule that is logically consistent. The assembly of the
schedule is flexible enough to map the functions in the pro-
gram to the functional units of the underlying hardware.
The Loci model was created at Mississippi State Univer-
sity, in part, from knowledge of unstructured mesh idioms
gleaned from working directly as a developer on DOE ASC
software applications. Loci is now used by NASA’s Marshall
Space Flight Center for its ability to automatically paral-
lelize serial source code, and to exploit the logical consis-
tency features (and hence correctness checking) not found
in other languages. Again, direct knowledge of the appli-
cation space is what made this full featured programming
model possible.

6. METRICS
We have been struggling to develop a set of meaningful per-
formance metrics that can be used to help characterize the
scalability of our software. The best publically available
tools we have found have been Intel’s Parallel Advisor and
the Embla data dependence profiling tool. We believe there

is a glaring absence of a tool that provides an available par-
allelism metric that would identify sections of applications
that have dependencies that effectively serialize associated
algorithms. We believe that compilers store a lot of this de-
pendency information internally, and that if compilers could
simply output statistics on the static dependence distances
they have found, it could make it much easier to evaluate
scalability. Adding a dynamic dependence distance evalua-
tion tool would give us an even better picture of the resource
bottlenecks in our large applications.

7. LOOKING FORWARD
A cost-effective and results-oriented way to move scalable
programming forward is through direct interaction between
the application developers and the vendor compiler and run-
time developers. One of the strengths of Lawrence Liver-
more National Laboratory has been the way we co-locate
team members with diverse backgrounds in adjacent offices.
In the past this has allowed Livermore to produce high qual-
ity integrated software products in terms of both perfor-
mance and capability. While other institutions have had
great success at deep dives in basic research areas, LLNL
believes that integrating available capabilities across disci-
plines into a functional system level product is the key to
true success. Livermore has found that this kind of success
requires direct and co-located interaction.

A second approach to encourage scalable performance would
be to produce a multi-lab suite of core kernels akin to what
the Livermore Loops benchmark provided in the past. Cur-
rent application developers at each of the national labora-
tories have encountered software constructs that should be
optimizable, given the compilers ability to analyze the con-
structs being used. We have often found, for each construct,
say, two out of three vendor compilers will optimize the con-
struct correctly, but one will not. This sounds like a good
situation until one realizes that applications have dozens of
constructs that need to be optimized simultaneously, and a
two in three chance of optimization for each construct has
a multiplicative effect that results in abysmal performance
using any given compiler. By providing a test suite along
with tests for expected performance behavior, we could write
RFPs for new hardware to include this test suite. This could
encourage compiler support for scientific software constructs
that have long been needed, or at minimum encourage more
interaction between app and compiler people.

8. SUMMARY
NNSA has many large legacy applications that we need to
port to emerging architectures with minimal effort. Explor-
ing multiple portability options directly in large software
application is impractical. To solve this problem, we create
proxy applications with sufficient complexity to be represen-
tative of complex data interactions found in real software.
Proxy applications must also be compact enough to act as
experimental test beds for a variety of potential future pro-
gramming models.

We believe there are many similar constructs being used
across most large science applications, but there is no com-
mon terminology to describe the high level concepts shared
by these applications. By fostering a common terminology,
we believe that great progress could be made in discover-



ing a programming model that would work well across mesh
based physics software on future architectures.

Through our exploration of the LULESH mini-app, we have
found that direct vendor interaction has been (or would be)
the most profitable way to solve many of the programming
model issues we have found. Directly interacting with ven-
dors to address existing low level optimization deficiencies
could lead researches to create better programming models
using less effort. Barring direct interaction, we might at least
produce a representative tri-lab suite of application kernels
that we believe should be optimizable by existing compilers,
but are not.

We would greatly benefit from a new tool that yields an
available parallelism metric to pinpoint algorithms that need
to be rewritten, or to measure how scalable our existing ap-
plications can be, either in theory or in practice. Addition-
ally, if we had better compilers as described above, existing
performance metrics would likely become more meaningful
due to eliminating the noise caused by unpredictable and
variable optimization quality in current compilers.

Finally, we believe direct collaboration between app devel-
opers and compiler developers in the context of mini-apps
or larger legacy applications is vital. From our experience
with LULESH, we have found that the application develop-
ers can only transfer domain-specific knowledge to compiler
writers (and vice-versa) by exposing compiler behavior on
application kernels in an interactive co-located working en-
vironment.


